首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   24篇
  2023年   5篇
  2022年   3篇
  2021年   14篇
  2020年   30篇
  2019年   36篇
  2018年   18篇
  2017年   10篇
  2016年   7篇
  2015年   25篇
  2014年   17篇
  2013年   17篇
  2012年   19篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   2篇
  1968年   1篇
排序方式: 共有276条查询结果,搜索用时 46 毫秒
31.
To explore restoration of ovarian function using epigenetically-related, induced pluripotent stem cells (iPSCs), we functionally evaluated the epigenetic memory of novel iPSC lines, derived from mouse and human ovarian granulosa cells (GCs) using c-Myc, Klf4, Sox2 and Oct4 retroviral vectors. The stem cell identity of the mouse and human GC-derived iPSCs (mGriPSCs, hGriPSCs) was verified by demonstrating embryonic stem cell (ESC) antigen expression using immunocytochemistry and RT-PCR analysis, as well as formation of embryoid bodies (EBs) and teratomas that are capable of differentiating into cells from all three germ layers. GriPSCs’ gene expression profiles associate more closely with those of ESCs than of the originating GCs as demonstrated by genome-wide analysis of mRNA and microRNA. A comparative analysis of EBs generated from three different mouse cell lines (mGriPSCs; fibroblast-derived iPSC, mFiPSCs; G4 embryonic stem cells, G4 mESCs) revealed that differentiated mGriPSC-EBs synthesize 10-fold more estradiol (E2) than either differentiated FiPSC- or mESC-EBs under identical culture conditions. By contrast, mESC-EBs primarily synthesize progesterone (P4) and FiPSC-EBs produce neither E2 nor P4. Differentiated mGriPSC-EBs also express ovarian markers (AMHR, FSHR, Cyp19a1, ER and Inha) as well as markers of early gametogenesis (Mvh, Dazl, Gdf9, Boule and Zp1) more frequently than EBs of the other cell lines. These results provide evidence of preferential homotypic differentiation of mGriPSCs into ovarian cell types. Collectively, our data support the hypothesis that generating iPSCs from the desired tissue type may prove advantageous due to the iPSCs’ epigenetic memory.  相似文献   
32.
33.
BioMetals - A group of bidentate nitrogen and sulfur donor pyrazole derivative ligands abbreviated as Na[RNCS(Pz)], Na[RNCS(PzMe2)], Na[RNCS(PzMe3)], Na[RNCS(PzPhMe)], Na[RNCS(PzPh2)], where...  相似文献   
34.
L-type Ca2+ channels play a critical role in cardiac rhythmicity. These ion channels are oligomeric complexes formed by the pore-forming CaVα1 with the auxiliary CaVβ and CaVα2δ subunits. CaVα2δ increases the peak current density and improves the voltage-dependent activation gating of CaV1.2 channels without increasing the surface expression of the CaVα1 subunit. The functional impact of genetic variants of CACNA2D1 (the gene encoding for CaVα2δ), associated with shorter repolarization QT intervals (the time interval between the Q and the T waves on the cardiac electrocardiogram), was investigated after recombinant expression of the full complement of L-type CaV1.2 subunits in human embryonic kidney 293 cells. By performing side-by-side high resolution flow cytometry assays and whole-cell patch clamp recordings, we revealed that the surface density of the CaVα2δ wild-type protein correlates with the peak current density. Furthermore, the cell surface density of CaVα2δ mutants S755T, Q917H, and S956T was not significantly different from the cell surface density of the CaVα2δ wild-type protein expressed under the same conditions. In contrast, the cell surface expression of CaVα2δ D550Y, CaVα2δ S709N, and the double mutant D550Y/Q917H was reduced, respectively, by ≈30–33% for the single mutants and by 60% for the latter. The cell surface density of D550Y/Q917H was more significantly impaired than protein stability, suggesting that surface trafficking of CaVα2δ was disrupted by the double mutation. Co-expression with D550Y/Q917H significantly decreased CaV1.2 currents as compared with results obtained with CaVα2δ wild type. It is concluded that D550Y/Q917H reduced inward Ca2+ currents through a defect in the cell surface trafficking of CaVα2δ. Altogether, our results provide novel insight in the molecular mechanism underlying the modulation of CaV1.2 currents by CaVα2δ.  相似文献   
35.
Effects of non-thermal plasma on mammalian cells   总被引:1,自引:0,他引:1  
Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers.  相似文献   
36.
Although winter conditions play a major role in determining the productivity of the western Antarctic Peninsula (WAP) waters for the following spring and summer, a few studies have dealt with the seasonal variability of microorganisms in the WAP in winter. Moreover, because of regional warming, sea-ice retreat is happening earlier in spring, at the onset of the production season. In this context, this study describes the dynamics of the marine microbial community in the Melchior Archipelago (WAP) from fall to spring 2006. Samples were collected monthly to biweekly at four depths from the surface to the aphotic layer. The abundance and carbon content of bacteria, phytoplankton and microzooplankton were analyzed using flow cytometry and inverted microscopy, and bacterial richness was examined by PCR–DGGE. As expected, due to the extreme environmental conditions, the microbial community abundance and biomass were low in fall and winter. Bacterial abundance ranged from 1.2 to 2.8 × 105 cells ml?1 showing a slight increase in spring. Phytoplankton biomass was low and dominated by small cells (<2 μm) in fall and winter (average chlorophyll a concentration, Chl-a, of, respectively, 0.3 and 0.13 μg l?1). Phytoplankton biomass increased in spring (Chl-a up to 1.13 μg l?1), and, despite potentially adequate growth conditions, this rise was small and phytoplankton was still dominated by small cells (2–20 μm). In addition, the early disappearing of sea-ice in spring 2006 let the surface water exposed to ultraviolet B radiations (UVBR, 280–320 nm), which seemed to have a negative impact on the microbial community in surface waters.  相似文献   
37.
Adipose-derived stem cells (ASCs) are regarded as a major player of breast cancer microenvironment. By production of various growth factors and expression of regulatory molecules, it is postulated that ASCs protect breast cancer cells from the host immune responses. In this study, the expressions of insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), CXCL8 (IL-8) in breast cancer cells and adipose-derived stem cells isolated from breast tissue of women with breast cancer were investigated. The results were analyzed comparatively in normal ASCs isolated from healthy normal women. In case of breast cancer tissues, results were analyzed between high stage and low stage patients. The expressions of extracted mRNAs were determined using real-time quantitative RT-PCR. As a result, in breast cancer tissues, IGF-1 and IL-8 mRNAs had 28.6 and 56-fold more expressions in high stage compared to low stage patients. In ASCs, relative quantifications (RQ) of VEGF, IL-8, HGF and IGF-1 was about 2-fold higher in patients than controls. Data of this study conclude that presence of resident ASCs within the scaffold of breast tissue may support breast tumor growth and progression through the expressions of tumor promoting factors.  相似文献   
38.
Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta7-H3m](2), is a four-alpha-helix bundle that contains two bis(3-methyl-l-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-l-histidine) heme binding sites in [Delta7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta7-H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.  相似文献   
39.
The circulating population of peripheral T lymphocytes obtained from a blood sample can provide a large amount of information about an individual's medical status and history. Recent evidence indicates that the detection and functional characterization of antigen-specific T cell subsets within the circulating population may provide a diagnostic indicator of disease and has the potential to predict an individual's response to therapy. In this report, a microarray detection platform that combines grating-coupled surface plasmon resonance imaging (GCSPRI) and grating-coupled surface plasmon coupled emission (SPCE) fluorescence detection modalities were used to detect and characterize CD4(+) T cells. The microspot regions of interest (ROIs) printed on the array consisted of immobilized antibodies or peptide loaded MHC monomers (p/MHC) as T cell capture ligands mixed with additional antibodies as cytokine capture ligands covalently bound to the surface of a corrugated gold sensor chip. Using optimized parameters, an unlabeled influenza peptide reactive T cell clone could be detected at a frequency of 0.1% in a mixed T cell sample using GCSPRI. Additionally, after cell binding was quantified, differential TH1 cytokine secretion patterns from a T cell clone cultured under TH1 or TH2 inducing conditions was detected using an SPCE fluorescence based assay. Differences in the secretion patterns of 3 cytokines, characteristic of the inducing conditions, indicated that differences were a consequence of the functional status of the captured cells. A dual mode GCSPRI/SPCE assay can provide a rapid, high content T cell screening/characterization tool that is useful for diagnosing disease, evaluating vaccination efficacy, or assessing responses to immunotherapeutics.  相似文献   
40.
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号